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PROBLEM OF CAPILLARY DISPLACEMENT

FOR ONE MODEL OF THREE-PHASE FILTRATION

UDC 517.958:531.72V. V. Shelukhin

The class of capillary pressures corresponding to a triangular tensor of capillary diffusion in a three-
phase fluid is studied. Filtration with such a tensor is described by a parabolic system of equations
degenerating on solutions. This system is integrodifferential because the desired quantities are the
total flow rate and the phase-saturation distribution under conditions of a specified pressure drop on
the boundaries of the flow region in one of the phases. It is shown that in the problem of capillary
displacement, the degenerate system can be studied using a special maximum principle.

Key words: filtration, three-phase fluid, capillary pressure, degenerate parabolic system, existence
of solutions.

Introduction. As shown in [1], the system of equations of three-phase filtration of immiscible incompressible
fluids ignoring capillary pressures is “internally contradictory.” This is due to the fact that this system is hyperbolic
for some saturation values and elliptic for others. This motivates interest in models of parabolic type that take into
account capillary pressure [2].

The present paper considers three-phase fluids with a triangular capillary-diffusion tensor. One-dimensional
flows of such fluids are described by the system

uit + v(t)fi(u)x = (B(u)ijujx)x, i, j = 1, 2, B21 = 0, (1)

where the function of time v(t) is unknown since it depends on the solution u. The paper gives a description of the
class of capillary pressures that lead to a triangular matrix B.

The main feature of system (1) is that it degenerates on solutions, i.e., loses parabolicity. However, even in
the case of a nondegenerate matrix B there is no complete theory for systems of the form of (1). Parabolic systems
with the conditions B12 = B21 = 0 and B11 = B22 are considered in [3]. In [4], the condition ∂f2/∂u1 = 0 is
imposed in addition to the condition of boundedness of solutions and the constraints B21 = 0 and ∂B22/∂u1 = 0.
We note that the indicated papers ignore the constraint on the solution that follows from the physical meaning of
the problem:

0 6 ui 6 1, u1 + u2 6 1. (2)

In the present paper, a theory of nondegenerate parabolic systems with constraint (2) is developed and used
to solve one degenerate problem of capillary displacement.

1. Triangular Capillary-Diffusion Tensor. At present, there is no conventional thermodynamic principle
that defines the equilibrium pressure distribution for three immiscible capillary fluids in a porous medium. Therefore,
it is reasonable to consider some critical cases where pressures can be determined.

Whatever the pressure distribution in the phases, it influences only the diffusion of saturations. The con-
straints on the capillary-diffusion tensor stated below correspond to the critical case where the diffusion of one of
the phases is determined by the saturation of this phase and does not depend on the saturations of the other two
phases.
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We consider one-dimensional horizontal flows of a three-phase fluid in a porous medium in a bounded region
Ω = {−1 < x < 1}. Let u1, u2, and u3 be the phase saturations. If the phase densities are constant, the mass
balance is described by the following equations [5]:

∂

∂t
(mui) +

∂

∂x
vi = 0. (3)

Here m is the porosity and vi is the filtration rate of the ith phase. The equality

u1 + u2 + u3 = 1 (4)

follows from the definition of saturations as the volumetric fractions of phases. Applications use the Darcy law [5]

vi = −kλipix, λi = λi(u1, u2), (5)

where k is the absolute permeability and λi is the mobility of the ith phase. For the phase pressures pi, the following
relations hold:

P1(u1, u2) = p1 − p3, P2(u1, u2) = p2 − p3.

Here the capillary pressures Pi are considered specified functions of u1 and u2.
We denote

λ =
3∑
1

λi, fi =
λi
λ
, v =

3∑
1

vi, i = 1, 2, 3. (6)

Then, from Eqs. (3) and (5) it follows that vx = 0, i.e., v depends only on t.
Summation of Eqs. (5) yields the equality

−∂p3

∂x
=
v

λ
+
λ1

λ

∂P1

∂x
+
λ2

λ

∂P2

∂x
. (7)

If introduce the notation p3(1, t)− p3(−1, t) = ∆p3, integration of equality (7) leads to the following representation
for the total velocity:

v(t) = −
(

∆p3 +

1∫
−1

(λ1

λ

∂P1

∂x
+
λ2

λ

∂P2

∂x

)
dx
)/ 1∫
−1

λ−1 dx. (8)

Therefore, equalities (5) are written as

v1 = vf1 +
λ1λ2

λ

∂P2

∂x
− λ1(λ2 + λ3)

λ

∂P1

∂x
,

v2 = vf2 +
λ1λ2

λ

∂P1

∂x
− λ2(λ1 + λ3)

λ

∂P2

∂x
.

Thus, from Eq. (3) we obtain a closed system of equations for the functions u1 and u2:

uit + v(t)fi(u)x = (B(u)ijujx)x. (9)

Here fj(u1, u2) and v(t) are defined by formulas (6) and (8) and the matrix B has the form

B11 =
λ1(λ2 + λ3)

λ

∂P1

∂u1
− λ1λ2

λ

∂P2

∂u1
, B12 = −λ1λ2

λ

∂P2

∂u2
+
λ1(λ2 + λ3)

λ

∂P1

∂u2
,

B21 =
λ2(λ1 + λ3)

λ

∂P2

∂u1
− λ1λ2

λ

∂P1

∂u1
, B22 = −λ1λ2

λ

∂P1

∂u2
+
λ2(λ1 + λ3)

λ

∂P2

∂u2
.

(10)

The nonlocal system (9) describes motion under the action of a pressure drop in one of the phases on the boundaries
of the flow region.

From condition (4) follows the constraint

u ∈ ∆ = {u: u ∈ R2, 0 6 ui 6 1, u1 + u2 6 1}, u =
(
u1

u2

)
.
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Note that the triangle ∆ can be treated as the intersection of the half-planes:

∆ =
3⋂
1

{Gi(u) 6 0}, G1 = −u1, G2 = −u2, G3 = u1 + u2 − 1. (11)

We formulate the following assumptions on the empirical parameters (the functions λi and Pi):

λi = λi(ui) > 0, λi|ui=0 = 0, i ∈ {1, 2, 3}; (12)

B21 = 0, B11 > 0, B22 = B22(u2) > 0 in ∆. (13)

Condition (12) is conventional; it is justified, for example, in [5]. This condition, in particular, leads to degeneration
of system (9). Condition (13) implies that the first and third phases do not determine the diffusion process in the
second phase [6, 7]. The equalities B21 = 0 and B22 = B22(u2) represent the capillary diffusion hypothesis and can
be written as

A
∂P1

∂u1
=
∂P2

∂u1
,

∂P2

∂u2
= A

∂P1

∂u2
+

λB22(u2)
λ2(λ1 + λ3)

, A =
λ1

λ1 + λ3
. (14)

By virtue of conditions (14), system (9) is simplified. Indeed, the following formulas are valid:

λ1

λ

∂P1

∂u1
+
λ2

λ

∂P2

∂u1
=
∂P2

∂u1
,

λ1

λ

∂P1

∂u2
+
λ2

λ

∂P2

∂u2
= −B22

λ2
+
∂P2

∂u2
.

Therefore,

λ1

λ

∂P1

∂x
+
λ2

λ

∂P2

∂x
=
∂P2

∂x
+
∂F

∂x
, F (u2) = −

u2∫
0

B22(s)
λ2(s)

ds.

Then, formula (8) can be written as

v(t) = −(p2 + F (u2))
/ 1∫
−1

λ−1 dx
∣∣∣1
−1
.

We assume that the difference ∆p2 = p2

∣∣∣x=1

x=−1
and the saturations u2 at the terminal points x = ±1 are specified

functions of time. Therefore, in system (9), v(t) is a functional of the solution of the form

v(t) = g1(t)
/ 1∫
−1

æ(u1, u2) dx ≡ g[t;u], g1 = −∆p2(t)−∆F (t), æ = λ−1,

where

∆F (t) = F (u2(1, t))− F (u2(−1, t)).

The condition of capillary displacement is the equality
3∑
1

vi = 0, which implies that the motion of one of

the phases is opposite to the motions of the other two phases [8]. In particular, v(t) ≡ 0 if

p2

∣∣∣
x=−1

= p2

∣∣∣
x=1

, u2

∣∣∣
x=−1

= u2

∣∣∣
x=1

. (15)

From the derivation of the nonlocal system (9), it follows that the capillary-displacement conditions (15)
lead to the simplified system

uit = (B(u)ijujx)x, u ∈ ∆. (16)

We note that these equations are formally separated because the second equation does not contain the function u1.
At the same time, by virtue of the condition u2(t, x) 6 1−u1(t, x), the second equation cannot be solved separately
from the first.
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2. Mobilities and Capillary Pressures. For specified mobilities λi(u1, u2) (i = 1, 2, 3) and the coefficient
B22(u2), conditions (14) are a system of linear equations for the capillary pressures Pi(u1, u2). We analyze this
system in the case of practical importance where the mobilities are homogeneous functions [5]:

λi = kiu
n
i , ki = const > 0, n > 0. (17)

We first consider the homogeneous system with B22 = 0 and apply an algorithm for calculating symmetry
groups [9]. If the homogeneous system (14) admits a one-parameter group with the infinitesimal operator

X = ζ1(u1, u2, P1, P2)
∂

∂u1
+ ζ2(· · ·) ∂

∂u2
+ η1(· · ·) ∂

∂P1
+ η2(· · ·) ∂

∂P2
,

then the functions ζi and ηi satisfy the constraints

ζ1 ∂A

∂u1
+ ζ2 ∂A

∂u2
+A

( ∂η1

∂P1
+A

∂η1

∂P2

)
=
∂η2

∂P1
+A

∂η2

∂P2
,

∂η2

∂u2
= A

∂η1

∂u2
,

∂η2

∂u1
= A

∂η1

∂u1
.

From the given conditions it follows, in particular, that the system admits a group with the nontrivial operator

X = −ξ ∂

∂u1
+

∂

∂u2
, ξ =

u1

1− u2
.

This implies that for any number a, the transformation of variables (u1, u2)→ (u′1, u
′
2), where

u′1 = u1 − au1/(1− u2), u′2 = u2 + a (a ∈ R),

converts any solution to a certain solution of the same homogeneous system. By virtue of conditions (17), the
function A(u) depends only on the variable ξ. It is easy to show that a pair of functions P1 = ϕ(ξ) and P2 = φ(ξ)
is a solution of the homogeneous system (14) if φ′(ξ) = A(ξ)ϕ′(ξ). We seek a solution of the inhomogeneous system
(14) in the case where

B22 = αun2 (1− u2)n, α = const > 0.

The solution is sought in the form

P1 = a(u2)b(ξ) + ϕ(ξ), P2 = a(u2)B(ξ) + c(u2) + φ(ξ), B′ = Ab′. (18)

Substitution of these formulas into (14) yields

a′(u2) =
αun2
k1

, b(ξ) =
k1

k3(1− ξ)n−1
− 1
ξn−1

,

B(ξ) =
k1

k3(1− ξ)n−1
, c′(u2) =

α(1− u2)n

k2
.

(19)

Next, from formulas (10), we determine the capillary diffusion tensor B:

B11 = k3(ϕ′(ξ) + a(u2)b′(ξ))A(ξ)(1− ξ)n(1− u2)n−1,

B22 = αun2 (1− u2)n, B12 = ξ(B11 −B22), B21 = 0.
(20)

Thus, if the mobilities and capillary pressures are specified by formulas (17)–(19), the matrix B is triangular
and has the form of (20). Inequalities (13) are satisfied if ϕ′(ξ) > 0.

3. Maximum Principle. For system (9), the maximum principle, known as the principle of positively
invariant regions, holds [10]. Let the saturations ui (i = 1, 2) satisfy the initial and boundary conditions

ui(0, x) = ui0(x), ui(t,±1) = ui±(t), u0(x) ∈ ∆, u±(t) ∈ ∆. (21)

The indicated maximum principle is formulated as follows: u(t, x) ∈ ∆ for any (t, x) ∈ Q = (0, T ) × Ω. Below,
we shall prove the inclusion of u ∈ ∆, but we first verify satisfaction of the following two conditions necessary for
this [10]:

Bt〈∇uGi〉 = µi∇uGi, (f ′)t〈∇uGi〉 = αi∇uGi if Gi(u) = 0. (22)
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Here the matrix B and the vector f are specified by formulas (20), (6), and (17). Conditions (22) imply that the
normal vector to the boundary Gi(u) = 0 of the triangle ∆ is an eigenvector of the matrices Bt and f ′

t on the
boundary Gi(u) = 0, where elements of the matrix f ′ are the numbers ∂fi/∂uj . In this case, the eigenvalues µi
should be nonnegative.

If the functions Gi(u) are defined by formulas (11), the first equality in (22) is equivalent to the three
equalities

B12 = 0, B21 = 0, B11 = B12 +B22

on the segments G1 = 0, G2 = 0, and G3 = 0, respectively. These equalities are valid by virtue of the definitions of
the coefficients Bij .

We check equality (22) for f ′ on the segment G3(u) = 0. The vector ∇uG3 is an eigenvector of the matrix
(f ′)t only if

∂f1

∂u1
+
∂f2

∂u1
=
∂f1

∂u2
+
∂f2

∂u2
at u1 + u2 = 1.

At the same time, this equality is a simple corollary of condition (12) for λ3:

λ3(u1, u2) = 0 at u1 + u2 = 1.

The other two conditions on the matrix f ′ are similarly checked.
For system (16), describing capillary displacement, another maximum principle also holds. This principle

permits one to prove the resolvability of the Dirichlet problem (21) subject to the conditions

0 < δ 6 ui0(x) 6 1− δ, 0 < δ 6 ui±(t) 6 1− δ. (23)

We show that there exists a number 0 < δ′ 6 δ such that

0 < δ′ 6 ui(t, x) 6 1− δ′. (24)

Indeed, in terms of the functions ξ and u2, system (16) is written as

ξt = (B11ξx)x −
ξxu2x(B11 +B22)

1− u2
, u2t = (B22(u2)u2x)x.

For each of these equations, the conventional maximum principle holds [3]. Under conditions (23), there exists δ̃ > 0
such that δ̃ 6 ξ 6 1− δ̃ at t = 0 and x = ±1. It is now obvious that δ̃ 6 ξ 6 1− δ̃ for all (t, x) ∈ Q. This estimate
combined with the apparent estimate δ 6 u2 6 1− δ are equivalent to estimates (24).

4. Approximate Solutions. For the problem (9), (21), we construct approximate solutions that depend
on the parameters ε, ν, and δ. Let h: R2 → R

2 be a smooth function that satisfies the inequality ∇uGi · h(u) < 0
(i = 1, 2, 3) near the boundary ∂∆ of the triangle ∆.

In the present section, the following smoothness of the input data is assumed:

u0(x) ∈ H2+β( Ω ), u±(t) ∈ H1+β([0, T ]), 0 < β < 1.

We consider the problem

ut + g[t;u]f(u)x = (Dνux)x + εh, (t, x) ∈ Q; (25)

δun + u = u∂ε at |x| = 1, u
∣∣∣
t=0

= u0ε(x). (26)

Here

un

∣∣∣
x=±1

= ±ux, u∂

∣∣∣
x=±1

= u±(t),

ui∂ε = (1− ε)(ε/2 + ui∂), ui0ε = (1− ε)(ε/2 + ui0), i = 1, 2.

The smooth matrix Dν satisfies the conditions

Dν > ν, Dν
21 = 0,

(
Dνt〈∇uGi〉 − µi∇uGi

)∣∣∣
Gi(u)=0

= 0, µi > 0. (27)
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Generally, the vector function f(u) is defined by formulas (6) and (12). Below in this section, the superscripts ν
and superscript ε are omitted for simplicity.

In the case of periodic boundary conditions and for g[t;u] ≡ 1, the nondegenerate problem (25), (26) was
examined in [6]. In the present paper, because we use the same method, we examine the problem (25), (26)
schematically, outlining the main steps and singularities.

Step 1. We formulate the following statement.
Lemma 4.1. The values of a solution u(t, x) lie strictly inside the triangle ∆ if u0(x), u±(t) ∈ ∆ for all x

and t.
Proof. Following the method of positively invariant regions, we designate zi = Gi(u). We prove that zi < 0

for each i. By the conditions of the lemma,

max
x∈Ω

zi(0, x) < 0, i ∈ {1, 2, 3}.

We assume that there exists the first time t1 > 0 such that

max
x∈Ω

zi(t1, x) = zi(t1, x0) = 0

for a certain i. There is an alternative: either |x0| < 1 or |x0| = 1. The case x0 = 1 is impossible. Indeed, since
δzix + zi = −ui+, it follows that zix(t1, 1) < 0. By virtue of continuity, there exists a time t0 ∈ (0, t1) such that
max zi(t0, x) = 0 and the maximum is taken over all x ∈ Ω. This contradicts the choice of t1. The impossibility of
satisfaction of the equality x0 = −1 is established similarly.

Let us consider the case |x0| < 1. We multiply Eq. (25) by ∇uGi; then, in view of conditions (27), the
following equality holds at the point (t1, x0):

zit + g[t;u]αizix = (µizix)x + εh · ∇uGi. (28)

It is assumed that zi(t1, x0) = max zi(τ, y), and the maximum is taken over all 0 6 τ 6 t1 and |y| 6 1. Therefore,

zix(t1, x0) = 0, zixx(t1, x0) 6 0, zit(t1, x0) > 0. (29)

The inequality h · ∇uGi < 0 is satisfied at the point (t1, x0) by virtue of the choice of the function h. Then, from
Eq. (28) follows the inequality zit(t1, x0) < 0, which contradicts (29).

Step 2. The following estimate holds:

‖ux‖L2(Q) + δ
∑
±

T∫
0

|ux(t,±1)|2 dt 6 c. (30)

Here the constant c depends on ‖u̇±‖L1(0,T ), ‖h‖L1(Q), and ν and does not depend on ε and δ. For the function u2,
this estimate follows from the equality

1
2
d

dt

∫
Ω

v2
2 dx+

∫
Ω

D22|v2x|2 dx = v2(D22(v2x + w2x)− gf2)
∣∣∣+1

−1
+
∫
Ω

(
v2x(gf2 −D22w2x)− w2tv2 + εh2v2

)
dx,

in which
w = (1− x)u−/2 + (1 + x)u+/2, v = u− w.

Next, a similar equality is obtained for v1 by multiplying the first equation of system (25) by u1, and thereby, the
estimate (30) for u1 is derived.

As a corollary of Eqs. (25), we obtain the following estimate which is uniform in ε and δ:

‖ut‖L2(0,T ;W−1,2(Ω)) 6 c. (31)

Step 3. For a certain constant α ∈ (0, 1), the following estimate holds:

|u2|(α)
Q ≡ ‖u2‖Hα,α/2(Q) 6 c. (32)

Here and below, the constant c depends on δ.
The proof is based on the reduction method known in the theory of linear parabolic equations [3]. We

introduce a smooth function 0 6 ζ(t, x) 6 1 that is different from zero only for x ∈ Kρ (Kρ is an open sphere of
radius ρ with center at x0 ∈ Ω ). We designate

Ωρ = Ω ∩Kρ = [x0
−, x

0
+], x0

+ = min {1, x0 + ρ}, x0
− = max {−1, x0 − ρ}.
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Multiplication of the second equation of system (25) by the function

ζ2 max {u2 − k, 0} ≡ ζ2u
(k)
2 (k ∈ R)

and subsequent integration over Ωρ yield the equality

1
2
d

dt

∫
Ωρ

ζ2|u(k)
2 |2 dx+

∫
Ωρ

ζ2D22|u(k)
2x |2 dx = ζ2D22u2xu

(k)
2

∣∣∣x0
+

x0
−

− ζ2gf2u
(k)
2

∣∣∣x0
+

x0
−

−
∫
Ωρ

(
2ζζxD22u2xu

(k)
2 − ζζt|u(k)

2 |2 − gf2(2ζζxu
(k)
2 + ζ2u

(k)
2x )− εh2ζ

2u
(k)
2

)
dx.

We note that D22 > ν and δux

∣∣∣
x=±1

= ±(u∂ε± − u)
∣∣∣
x=±1

; for small ρ, we have

ζ2D22u2xu
(k)
2

∣∣∣x0
+

x0
−

6
1
δ
ζ2D22u

(k)
2 u2+

∣∣∣
x=1

+
1
δ
ζ2D22u

(k)
2 u2−

∣∣∣
x=−1

,

|ζ2v(k)||x|=1 6
∣∣∣ ∫
Ωρ

(ζ2v(k)
x + 2ζζxv(k)) dx

∣∣∣.
Therefore,

1
2
d

dt

∫
Ωρ

ζ2|u(k)
2 |2 dx+ ν

∫
Ωρ

ζ2|u(k)
2x |2 dx 6

ν

2

∫
Ωρ

ζ2|u(k)
2x |2 dx+ c1

∫
Ωρ

(
|u(k)

2 |2(|ζx|2 + |ζζt|+ ζ2) + ζ21Ak,ρ(t)

)
dx,

where Ak,ρ(t) is the intersection of the support u(k)
2 with the sphere Kρ; the designation 1A is used for the char-

acteristic function of the set A. The last inequality implies that u2 belongs to the class B2(Q,M, γ, r, δ, k), where
r = 6 (see formula (7.5) in [3, chapter 2, § 7]). Therefore, u2 ∈ Hα,α/2(Q) for a certain α ∈ (0, 1).

Step 4. The following estimate holds:

max
06t6T

{∫
Ω

u2
2x dx+ δ

∑
x=±1

u2
2x

}
+
∫
Q

(u2
2xx + u4

2x + u2
2t) dx dt 6 c.

Its derivation is based on multiplication of the second equation of system (25) by the function ζ(x) which possesses
the above-mentioned properties. In this case, we use the well-known inequality [3]∫

Kρ

ζ2v4
xdx 6 16osc2{v,Kρ}

∫
Kρ

(2ζ2v2
xx + ζ2v2

x) dx

and estimate
osc2{u2,Kρ} 6 cρα1 (α1 < α),

which follows from (32).
Step 5. The following estimates hold: |u1|(α)

Q 6 c and

max
06t6T

{∫
Ω

u2
1x dx+ δ

∑
x=±1

|u1x|2
}

+
∫
Q

(u2
1xx + u4

1x + u2
1t) dx dt 6 c.

This is proved similarly to the case of the function u2, taking into account the estimates obtained before.
Step 6. The following estimates hold:∫

Q

|uix|6 dx dt 6 c,
∫
Q

|uixuixx|2 dx dt 6 c.

By virtue of the inequalities∫
Q

|uix|6 dx dt 6
T∫

0

max
x∈Ω

|uix|4
∫
Ω

|uix|2 dx dt, max
|x|61

v4
x 6 (1/2)‖vx‖4L2(Ω) + 8‖vxx‖2L2(Ω)‖vx‖

2
L2(Ω),

we have

‖uix‖6L6(Q) 6 (1/2)‖uix‖4L∞(0,T ;L2(Ω))(1 + ‖uixx‖2L2(Q)) 6 c.
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Thus, the first of the formulated estimates is proved. The second estimate for the function u2 is proved as follows.
The second equation of system (25) can be treated as a linear equation for the function u2 and written as

u2t = D22u2xx + F,

F =
∂D22

∂u1
u1xu2x +

∂D22

∂u2
|u2x|2 − g[t;u]

( ∂f2

∂u1
u1x +

∂f2

∂u2
u2x

)
+ εh2.

From the aforesaid, it follows that ‖F‖L3(Q) 6 c. Therefore, according to the theory of linear equations [3], we
have ∫

Q

|u2xx|3 dx dt 6 c.

Then, the second estimate for the function u2 follows from the inequality∫
Q

|uv|2 dx dt 6
(∫
Q

|u|6 dx dt
)1/3(∫

Q

|v|3 dx dt
)2/3

.

The function u1 is similarly considered.
Step 7. There exists a constant α ∈ (0, 1) such that |uix|(α)

Q 6 c.
To prove these estimates, we use boundary condition (26), which allows us to consider the derivatives uix

bounded on the boundary of the region Ω and to act as in the case of the theory of linear parabolic equations.
Indeed, the function v = u2x is a solution of the equation

vt = (D22(u2)vx)x + F +Hx,

F =
∂D22

∂u1
u1xu2xx +

∂D22

∂u1
u1xxu2x + 2

∂D22

∂u2
u2xu2xx +

∂2D22

∂u2
1

u2
1xu2x + 2

∂2D22

∂u1∂u2
u1xu

2
2x +

∂2D22

∂u2
2

(u2x)3,

H = −g[t;u]
∂f2

∂u1
u1x − g[t;u]

∂f2

∂u2
u2x + εh2.

On the strength of the estimates obtained above, we have

‖F‖q,r,Q ≡
(∫ (∫

Ω

F q
)r/q

dt
)1/r

6 c, ‖H2‖q,r,Q 6 c

for q = 2 and r = 2. The constants q and r satisfy the conditions

1
r

+
1
2q

= 1− æ, 0 < æ <
1
2
, q ∈ [1,∞], r ∈

[ 1
1− æ

,
2

1− 2æ

]
, æ =

1
4
.

From the boundary conditions, we have ‖v(t,±1)‖Hα/2([0,T ]) 6 c, α 6 β. According to the linear theory [3, chapter 3,

§ 10], the estimate |v|(α)
Q 6 c holds for a certain α. The estimate for the function u1 is similarly proved.

Next, it is assumed that the initial and boundary data in (26) satisfy the matching conditions

±δu′0(±1) + u0(±1) = u±(0). (33)

Under these conditions, we derive the a prior estimate

|u|(2+β)
Q 6 c, (34)

which is uniform in ε. Then, just as in [6], the Leray–Schauder theorem on a fixed point is applied and the existence
and uniqueness of approximate solutions are proved.

Theorem 4.1. Let the functions f(u), ∇uf , Dij(u), ∇uDij, ∂2Dij/∂ui∂uj, g1(t), and h(u) satisfy the
condition of Hölder continuity with the exponent β ∈ (0, 1) and the matching conditions (33) hold. Then, the
problem (25), (26) has a single solution u(t, x) ∈ H2+β,1+β/2(Q̄) such that u(t, x) ∈ ∆ for all (t, x) ∈ Q.

Corollary 1. Since the estimate (34) does not depend on ε, Theorem 4.1 also holds true for ε = 0 as well.

836



5. Degenerate Problem of Capillary Displacement. In the present section, we examine system (16)
subject to the conditions

u
∣∣∣
x=±1

= u±(t), u
∣∣∣
t=0

= u0(x). (35)

Let us consider the approximate nondegenerate problem

ut = (Dν(u)ux)x,

νun + u = uν∂ at |x| = 1, u|t=0 = uν0(x).

Here

Dν
11 = ν + χν(u2)B11, Bν22 = ν + χν(u2)B22, Bν12 = χν(u2)ξ(B11 −B22),

Bν21 = 0, uν0 ∈ H2+β(Ω), uν0(x) ∈ ∆, uν± ∈ H1+β/2([0, T ]), uν±(t) ∈ ∆,

±νuν0(±1) + uν0(±1) = uν±(0),

‖uν± − u±‖W 1,1(0,T ) → 0, ‖uν0 − u0‖L2(Ω) → 0 for ν ↓ 0,

where χν(u2) is a smooth function:

χν(u2) = 1 if 0 6 u2 6 1− ν or χν(u2) = 0 if 1− ν/2 6 u2 6 1.

The function ξ(u1, u2) is discontinuous at the point (0, 1); therefore, we introduce the function χν(u2) to ensure
regularity in the triangle ∆ of the matrix Bν [the matrix B is specified by formulas (20)].

Let the nondegeneracy conditions (23) for the initial and boundary data be satisfied. As shown above, the
problem (16), (35) has a single classical solution uν with the apparent estimate δ 6 uν2(t, x) 6 1− δ. Therefore, for
sufficiently small ν, the following equalities hold:

Dν
11 = ν +B11, Dν

22 = ν +B22, Dν
12 = ξ(Dν

11 −Dν
22). (36)

Since Dν
22(uν) > δ1 > 0 is uniform in ν, relations (30) and (31) imply the following estimates, which are uniform

in ν:

‖uν2x‖L2(Q) 6 c, ‖uν2t‖L2(0,T ;W−1,2(Ω)) 6 c. (37)

In view of formulas (36), the function ξ = uν1/(1− uν2) is a solution of the problem

ξt = (Dν
11ξx)x − ξxuν2x(Dν

11 +Dν
22)/(1− uν2),

ν(1− uν2)
1− uν±

ξn + ξ = ξ± at x = ±1, ξ
∣∣∣
t=0

= ξ0(x).

By virtue of conditions (23), δ 6 ξ(t, x) 6 1 − δ is uniform in ν, according to the maximum principle. Obviously,
the following estimates uniform in ν hold:

δ2 6 uν1(t, x) 6 (1− δ)2, Dν
11 > δ2 > 0.

From (30) and (31) it follows that

‖uν1x‖L2(Q) 6 c, ‖uν1t‖L2(0,T ;W−1,2(Ω)) 6 c (38)

are uniform in ν.
According to the Aubin–Lions theorem, estimates (37) and (38) imply the existence of a certain sequence

of solutions un ≡ uνn and a limiting vector function u such that un(t, x) → u(t, x) almost everywhere in Q and
unx → ux weakly in L2(Q). Thus, it is proved that the problem (16), (35) has a weak solution. This result can be
formulated as the following theorem.

Theorem 5.1. Let the matrix B satisfy the conditions of theorem 4.1 and let the initial and boundary data
satisfy conditions (23) and ui±(t) ∈W 1,1(0, T ). Then, the problem (16), (35) has a solution (u1, u2) such that

u ∈ L∞(Q) ∩ L2(0, T ;W 1,2(Ω)), ut ∈ L2(0, T ;W−1,2(Ω))

and ∫
Q

(
uiϕt −Bij(u)

∂uj
∂x

∂ϕ

∂x

)
dx dt+

∫
Ω

ui0(x)ϕ(0, x) dx = 0 (i = 1, 2)

for any function ϕ ∈ L2(0, T ;W 1,2
0 (Ω)) ∩W 1,2(Q). In this case, the functions ui satisfy inequalities (2).
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